Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning
نویسندگان
چکیده
By deploying resources in the vicinity of users, edge caching can substantially reduce latency for users to retrieve content and relieve pressure on backbone network. Due capacity limitation dynamic nature user requests, how allocate reasonably must be considered. Some studies improve network performance by predicting popularity actively most popular content, thereby ignoring privacy security issues caused need collect information at central unit. To this end, a collaborative strategy based federated learning is proposed. First, used make distributed predictions preferences nodes develop an effective policy. Then, problem allocating optimize cost video providers formulated as Markov decision process, reinforcement method decisions. Compared with several basic strategies terms cache hit rate, transmission delay, cost, simulation results show that proposed reduces providers, has higher rate lower average delay.
منابع مشابه
Performance Optimization in Mobile-Edge Computing via Deep Reinforcement Learning
To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is emerging as a promising paradigm by providing computing capabilities within radio access networks in close proximity. Nevertheless, the design of computation offloading policies for a MEC system remains challenging. Specifically, whether to execute an arriving computation task at local mobile dev...
متن کاملCollaborative Deep Reinforcement Learning
Besides independent learning, human learning process is highly improved by summarizing what has been learned, communicating it with peers, and subsequently fusing knowledge from dierent sources to assist the current learning goal. is collaborative learning procedure ensures that the knowledge is shared, continuously rened, and concluded from dierent perspectives to construct a more profound...
متن کاملSecurity in Mobile Edge Caching with Reinforcement Learning
Mobile edge computing usually uses cache to support multimedia contents in 5G mobile Internet to reduce the computing overhead and latency. Mobile edge caching (MEC) systems are vulnerable to various attacks such as denial of service attacks and rogue edge attacks. This article investigates the attack models in MEC systems, focusing on both the mobile offloading and the caching procedures. In t...
متن کاملFederated Control with Hierarchical Multi-Agent Deep Reinforcement Learning
We present a framework combining hierarchical and multi-agent deep reinforcement learning approaches to solve coordination problems among a multitude of agents using a semi-decentralized model. The framework extends the multi-agent learning setup by introducing a meta-controller that guides the communication between agent pairs, enabling agents to focus on communicating with only one other agen...
متن کاملDeep Learning for Secure Mobile Edge Computing
Mobile edge computing (MEC) is a promising approach for enabling cloud-computing capabilities at the edge of cellular networks. Nonetheless, security is becoming an increasingly important issue in MEC-based applications. In this paper, we propose a deep-learning-based model to detect security threats. The model uses unsupervised learning to automate the detection process, and uses location info...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wireless Communications and Mobile Computing
سال: 2022
ISSN: ['1530-8669', '1530-8677']
DOI: https://doi.org/10.1155/2022/7212984